数据湖技术之iceberg(六)Iceberg表数据组织与查询

南墨2年前技术文章864

1     Iceberg表数据组织与查询

1) 下载avro-tools jar包

由于后期需要查看avro文件内容,我们可以通过avro-tool.jar来查看avro数据内容。可以在以下网站中下载avro-tools对应的jar包,下载之后上传到节点上:

https://mvnrepository.com/artifact/org.apache.avro/avro-tools

查看avro文件信息可以直接执行如下命令,可以将avro中的数据转换成对应的json数据。

[root@node5 ~]# java -jar /software/avro-tools-1.8.1.jar tojson snap-*-wqer.avro

2) 在Hive中创建Iceberg表并插入数据

在Hive中创建Iceberg格式表,并插入如下数据:

#在Hive中创建iceberg格式表

create table test_iceberg_tbl1(

id int ,

name string,

age int)

partitioned by (dt string)

stored by 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler';

 

#插入如下数据

insert into test_iceberg_tbl1 values (1,"zs",21,"20211212");

insert into test_iceberg_tbl1 values (2,"ls",22,"20211212");

insert into test_iceberg_tbl1 values (3,"ww",23,"20211213");

insert into test_iceberg_tbl1 values (4,"ml",24,"20211213");

insert into test_iceberg_tbl1 values (5,"tq",25,"20211213");

3) 查看Iceberg底层数据存储

下图为Iceberg表“test_iceberg_tbl1”在HDFS中存储的数据组织图:

通过上图我们可以看到有5个Snapshot快照,以上5个Snapshot实际上就是对应了5个Manifest list清单列表。

查询最新快照数据

为了了解Iceberg如何查询最新数据,可以参照下面这张图来详细了解底层实现。

查询Iceberg表数据时,首先获取最新的metadata信息,这里先获取到“00000-*ec504.metadata.json”元数据信息,解析当前元数据文件可以拿到当前表的快照id:“949358624197301886”以及这张表的所有快照信息,也就是json信息中snapshots数组对应的值。根据当前表的快照id值可以获取对应的snapshot对应的avro文件信息:“snap-*-32800.avro”,我们可以找到当前快照对应的路径,看到其包含的Manifest 清单文件有5个:"*32800-m0.avro"、"*2abba-m0.avro"、"*d33de-m0.avro"、"*748bf-m0.avro"、"*b946e-m0.avro",读取该Iceberg格式表最新数据就是读取这几个文件中描述对应的parquet数据文件即可。

我们可以看到“snap-*-32800.avro”快照文件中不仅有包含的manifest路径信息,还有“added_data_files_count”、“existing_data_files_count”、“deleted_data_files_count”三个属性,Iceberg 根据 deleted_data_files_count 大于 0 来判断对应的manifest清单文件里面是不是被删除的数据,如果一个manifest清单文件该值大于0代表数据删除,读数据时就无需读这个manifest清单文件对应的数据文件。

根据Manifest list找到了各个对应的manifest 清单文件,每个文件中描述了对应parquet文件存储的位置信息,可以看到在对应的avro文件中有“status”属性,该属性为1代表对应的parquet文件为新增文件,需要读取,为2代表parquet文件被删除。

查询某个快照的数据

Apache Iceberg支持查询历史上任何时刻的快照,在查询时需要指定snapshot-id属性即可,这个只能通过Spark/Flink来查询实现,例如在Spark中查询某个快照数据如下:

spark.read.option("snapshot-id",6155408340798912701L).format("iceberg").load("path")

查询某个快照数据的原理如下图所示(以查询快照id为“6155408340798912701”的数据为例):

通过上图可以看出,实际上读取历史快照数据和读取最新数据不同之处就是找到的snapshot-id不同而已,原理都是一样。

根据时间戳查看某个快照的数据

Apache iceberg还支持通过as-of-timestamp参数执行时间戳来读取某个快照的数据,同样也是通过Spark/Flink来读取,Spark读取代码如下:

spark.read.option("as-of-timestamp","时间戳").format("iceberg").load("path")

实际上通过时间戳找到对应数据文件的原理与通过snapshot-id找到数据文件原理一样,在*.metadata.json文件中,除了有“current-snapshot-id”、“snapshots”属性外还有“snapshot-log”属性,该属性对应的值如下:

我们可以看到其中有个 timestamp-ms 属性和 snapshot-id 属性,并且是按照 timestamp-ms 升序的。在 Iceberg 内部实现中,它会将 as-of-timestamp 指定的时间和 snapshot-log 数组里面每个元素的 timestamp-ms 进行比较,找出最后一个满足 timestamp-ms <= as-of-timestamp 对应的 snapshot-id,原理同上,通过snapshot-id再找到要读取的数据文件。


相关文章

CDH 5.16.2原地升级到CDP7.1.7

CDH 5.16.2原地升级到CDP7.1.7

1 升级Cloudera管理器1.1 升级Cloudera管理器准备1.1.1.1 关闭cloudera上托管的组件1.1.1.2 关闭Cloudera management service服务检查o...

SparkStreaming对接kafka消费模式区别

SparkStreaming对接kafka消费模式区别

Sparkstreaming对接kafka使用的消费方式与常规的kafka消费方式完全不同,其中区别主要为消费者的管理方式不同。Ø  常规消费模式Kafka常规的消费模式以消费者组为消费单元...

Kerberos安装

Kerberos安装

1、环境准备(1)安装好jdk(2)下载Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File。解压下载后的z...

CPU--使用率

CPU--使用率

一、CPU和任务统计信息查询/proc/stat第一行表示所有CPU的累加其他列表示不同场景下CPU的累加节拍数,单位:USER_HZ即10ms➜  ~ cat ...

doris-manager部署doris

doris-manager部署doris

1.下载Doris安装包登陆地址https://doris.apache.org/download选择需要下载的版本,这里选择2.0.2 source版本2.部署cluster manager(1)下...

hive创建hbase映射表

hive创建hbase映射表

hbase创建表,导入数据/opt/app/hbase-2.1.0/bin/hbase shell查看已有表,创建新表,查看表结构listcreate 'student', 'info', 'scor...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。