lru_cache 缓存

庆云1年前技术文章475

Python 语法: @functools.lru_cache(maxsize=128, typed=False)


Least-recently-used 装饰器。Iru 最近最少使用、cache 缓存。


如果 maxsize 设置为 None,则禁用 LRU 功能,并且缓存可以无限制增长。当 maxsize 是二的幂时,LRU 功能执行得最好。


如果 typed 设置为 True,则不同类型的函数参数将单独缓存。例如,f(3) 和 f(3.0) 将被视为具有不同结果的不同调用。


1、简单实例

import functools
import time

@functools.lru_cache()    # add = functools.lru_cache()(add)
def add(x, y, z=2):       # add() = wrapper()
    time.sleep(z)
    return x + y

add(4, 5)    # 执行2秒
add(4, 5)    # 瞬间完成
add(5, 6)    # 执行2秒
add(5, 6)    # 瞬间完成
add(4, 5)    # 瞬间完成


分析缓存是如何实现的?

  • 缓存可以通过字典记录实参和返回值,当下次传入相同实参时,通过 hash 访问;

  • key 是什么?


2、lru_cache 本质分析

2.1 lru_cache 伪代码

def lru_cache(maxsize=128, typed=False):

    def decorating_function(user_function):
        wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
        return update_wrapper(wrapper, user_function)    # return wrapper

    return decorating_function

def _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo):
  
    make_key = _make_key    # _make_key函数作用: hash 传入的实参
    
    def wrapper(*args, **kwds):
    
        key = make_key(args, kwds, t-ped)    # hash 实参作为 key
        result = user_function(*args, **kwds)

        return result

    return wrapper

2.2 key 是什么?

key 是传入的实参的组合,通过 _make_key 组织在一起。

# 分析源代码
def _make_key(args, kwds, typed,    # (4, 5, z=6)
             kwd_mark = (object(),),
             fasttypes = {int, str},
             tuple=tuple, type=type, len=len):

    key = args           # (4, 5)
    if kwds:    # {'z':6}
        key += kwd_mark  # (4, 5, object())
        for item in kwds.items():    # items遍历 ——> 二元组 : ('z', 6)
            key += item  # (4, 5, object(), 'z', 6)
    if typed:
        key += tuple(type(v) for v in args)
        if kwds:
            key += tuple(type(v) for v in kwds.values())
    elif len(key) == 1 and type(key[0]) in fasttypes:
        return key[0]
    return _HashedSeq(key)    # _HashedSeq 是什么?


class _HashedSeq(list):       # 我: _HashedSeq 是列表的子类

    __slots__ = 'hashvalue'

    def __init__(self, tup, hash=hash):
        self[:] = tup         # 切片赋值,右边为可迭代对象,self 为列表
        self.hashvalue = hash(tup)

    def __hash__(self):
        return self.hashvalue    # 相当于返回:hash(tuple(self))

2.3 _make_key 实例

from functools import _make_key

_make_key((1,), {}, False)           # 1
_make_key((1,), {'a':100}, False)    # [1, <object at 0x29b644d7e70>, 'a', 100]

# 再通过 class _HashedSeq(list) 进行元组包裹、哈希。

2.4 总结

lru_cache 缓存装饰器:

  1. 构造装饰器

  1. 将被包装函数拿进去

  1. 将所有实参 _make_key

  1. _make_key 放在 tuple

  2. 哈希


    3、Iru_cache 装饰器应用

    3.1 使用前提

    • 同样的函数参数一定得到同样的结果

    • 函数执行时间很长,且要多次执行

    • 本质是函数调用的参数 => 返回值

    3.2 缺点

    • 不支持缓存过期,key 无法过期、失效

    • 不支持清除操作

    • 不支持分布式,是一个单机的缓存

    3.3 适用场景及实例

    适用场景,单机上需要空间换时间的地方,可以用缓存来将计算变成快速的查询。cache 还可以通过预加载热点数据,使第一次也进行hash查询。


    实例:

    import functools
    @functools.lru_cache(maxsize=60)    # 空间换时间,递归也有深度限制
    def fib(n):
        return 1 if n < 3 else fib(n-1) + fib(n-2)
    
    fib(100)


    相关文章

    K8S中 CNI 插件的解读

    K8S中 CNI 插件的解读

    一.CNI是什么首先我们介绍一下什么是 CNI,它的全称是 Container Network Interface,即容器网络的 API 接口。它是 K8s 中标准的一个调用网络实现的接口。Kubel...

    Trino配置yanagishima-23.0(包含编译)

    Trino配置yanagishima-23.0(包含编译)

    1 环境介绍1.1 本文采用trino 359yanagishima v23.02 编译yanagishima2.1 安装编译yanagishima需要的工具安装编译yanagishima需要的工具w...

    Flink 状态管理

    Flink 状态管理

    一、  Flink 中的状态1、由一个任务维护,并且用来计算某个结果的所有数据,都属于这个任务的状态 2、可以认为状态就是一个本地变量,可以被任务的业务逻辑访问 3、Flink 会进行状态管理,包括状...

    Kubernetes openelb

    1、背景在云服务环境中的 Kubernetes 集群里,通常可以用云服务提供商提供的负载均衡服务来暴露 Service,但是在本地没办法这样操作。而 OpenELB 可以让用户在裸金属服务器、边缘以及...

    Hbase压缩算法

    HBase包含两类压缩机制:DataBlockEncode前缀压缩和文件级别的压缩Compress。对于DataBlockEncode前缀压缩,提供了三种算法:PREFIX\DIFF\FAST_DIF...

    Dockerfile全面指南:从基础到进阶,掌握容器化构建的核心工具

    Dockerfile全面指南:从基础到进阶,掌握容器化构建的核心工具

    引言        Dockerfile 是构建 Docker 镜像的核心文件。它定义了如何将应用程序及其依赖打包成一个可以跨平台运行的容器。本篇博客将从基础概...

    发表评论    

    ◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。