lru_cache 缓存

庆云2年前技术文章760

Python 语法: @functools.lru_cache(maxsize=128, typed=False)


Least-recently-used 装饰器。Iru 最近最少使用、cache 缓存。


如果 maxsize 设置为 None,则禁用 LRU 功能,并且缓存可以无限制增长。当 maxsize 是二的幂时,LRU 功能执行得最好。


如果 typed 设置为 True,则不同类型的函数参数将单独缓存。例如,f(3) 和 f(3.0) 将被视为具有不同结果的不同调用。


1、简单实例

import functools
import time

@functools.lru_cache()    # add = functools.lru_cache()(add)
def add(x, y, z=2):       # add() = wrapper()
    time.sleep(z)
    return x + y

add(4, 5)    # 执行2秒
add(4, 5)    # 瞬间完成
add(5, 6)    # 执行2秒
add(5, 6)    # 瞬间完成
add(4, 5)    # 瞬间完成


分析缓存是如何实现的?

  • 缓存可以通过字典记录实参和返回值,当下次传入相同实参时,通过 hash 访问;

  • key 是什么?


2、lru_cache 本质分析

2.1 lru_cache 伪代码

def lru_cache(maxsize=128, typed=False):

    def decorating_function(user_function):
        wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
        return update_wrapper(wrapper, user_function)    # return wrapper

    return decorating_function

def _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo):
  
    make_key = _make_key    # _make_key函数作用: hash 传入的实参
    
    def wrapper(*args, **kwds):
    
        key = make_key(args, kwds, t-ped)    # hash 实参作为 key
        result = user_function(*args, **kwds)

        return result

    return wrapper

2.2 key 是什么?

key 是传入的实参的组合,通过 _make_key 组织在一起。

# 分析源代码
def _make_key(args, kwds, typed,    # (4, 5, z=6)
             kwd_mark = (object(),),
             fasttypes = {int, str},
             tuple=tuple, type=type, len=len):

    key = args           # (4, 5)
    if kwds:    # {'z':6}
        key += kwd_mark  # (4, 5, object())
        for item in kwds.items():    # items遍历 ——> 二元组 : ('z', 6)
            key += item  # (4, 5, object(), 'z', 6)
    if typed:
        key += tuple(type(v) for v in args)
        if kwds:
            key += tuple(type(v) for v in kwds.values())
    elif len(key) == 1 and type(key[0]) in fasttypes:
        return key[0]
    return _HashedSeq(key)    # _HashedSeq 是什么?


class _HashedSeq(list):       # 我: _HashedSeq 是列表的子类

    __slots__ = 'hashvalue'

    def __init__(self, tup, hash=hash):
        self[:] = tup         # 切片赋值,右边为可迭代对象,self 为列表
        self.hashvalue = hash(tup)

    def __hash__(self):
        return self.hashvalue    # 相当于返回:hash(tuple(self))

2.3 _make_key 实例

from functools import _make_key

_make_key((1,), {}, False)           # 1
_make_key((1,), {'a':100}, False)    # [1, <object at 0x29b644d7e70>, 'a', 100]

# 再通过 class _HashedSeq(list) 进行元组包裹、哈希。

2.4 总结

lru_cache 缓存装饰器:

  1. 构造装饰器

  1. 将被包装函数拿进去

  1. 将所有实参 _make_key

  1. _make_key 放在 tuple

  2. 哈希


    3、Iru_cache 装饰器应用

    3.1 使用前提

    • 同样的函数参数一定得到同样的结果

    • 函数执行时间很长,且要多次执行

    • 本质是函数调用的参数 => 返回值

    3.2 缺点

    • 不支持缓存过期,key 无法过期、失效

    • 不支持清除操作

    • 不支持分布式,是一个单机的缓存

    3.3 适用场景及实例

    适用场景,单机上需要空间换时间的地方,可以用缓存来将计算变成快速的查询。cache 还可以通过预加载热点数据,使第一次也进行hash查询。


    实例:

    import functools
    @functools.lru_cache(maxsize=60)    # 空间换时间,递归也有深度限制
    def fib(n):
        return 1 if n < 3 else fib(n-1) + fib(n-2)
    
    fib(100)


    相关文章

    Doris部署介绍

    标准部署该文档主要介绍了部署 Doris 所需软硬件环境、建议的部署方式、集群扩容缩容,以及集群搭建到运行过程中的常见问题。在阅读本文档前,请先根据编译文档编译 Doris。软硬件需求概述Doris...

    MySQL 查询 Binlog 生成时间

    MySQL 查询 Binlog 生成时间

    描述本 SOP 介绍如何查询 Binlog 的生成时间。云上 RDS 有日志管理,但是自建实例没有,该脚本可用于自建实例闪回定位 Binlog 文件。脚本介绍通过读取 Binlog FORMAT_DE...

    数据建模用的哪些模型?

    星型模型星形模式(Star Schema)是最常用的维度建模方式。星型模式是以事实表为中心,所有的维度表直接连接在事实表上,像星星一样。星形模式的维度建模由一个事实表和一组维表成,且具有以下特点:a....

    Python 并发编程 Futures

    Python 并发编程 Futures

    说明编程中如果能合理利用编程语言的并发编程技巧,都可以极大提升程序的性能。在 Python 3.2 版本为用户提供了一个标准库 concurrent.futures 可以实现进程池 和 线程池,本篇文...

    数据湖技术之iceberg(八)Spark与Iceberg整合DDL操作

    数据湖技术之iceberg(八)Spark与Iceberg整合DDL操作

    1.CREATE TABLE 创建表Create table 创建Iceberg表,创建表不仅可以创建普通表还可以创建分区表,再向分区表中插入一批数据时,必须对数据中分区列进行排序,否则会出现文件关闭...

    MySQL Group Replication(一)部署篇

    MySQL Group Replication(一)部署篇

    MGR 简介Group Replication 是 MySQL 在 2016 年 12 月以 GA 的形式发布,以插件的形式绑定在 MySQL 服务器上。传统的 MySQL 复制功能是异步复制,而 M...

    发表评论    

    ◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。