Flume使用案例之Flume与Flume之间数据传递,多Flume汇总数据到单Flume

楼高2年前技术文章554

目标:flume11监控文件hive.logflume-22监控某一个端口的数据流,flume11flume-22将数据发送给flume-33flume33将最终数据写入到HDFS

分步实现:

1. 创建flume11.conf,用于监控hive.log文件,同时sink数据到flume-33

# 1 agent

a1.sources = r1

a1.sinks = k1

a1.channels = c1

 

# 2 source

a1.sources.r1.type = exec

a1.sources.r1.command = tail -F /opt/Andy

a1.sources.r1.shell = /bin/bash -c

 

# 3 sink

a1.sinks.k1.type = avro

a1.sinks.k1.hostname = dtstack_hdfs

a1.sinks.k1.port = 4141

 

# 4 channel

a1.channels.c1.type = memory

a1.channels.c1.capacity = 1000

a1.channels.c1.transactionCapacity = 100

 

# 5. Bind

a1.sources.r1.channels = c1

a1.sinks.k1.channel = c1

 2. 创建flume-22.conf,用于监控端口44444数据流,同时sink数据到flume-33

# 1 agent

a2.sources = r1

a2.sinks = k1

a2.channels = c1

 

# 2 source

a2.sources.r1.type = netcat

a2.sources.r1.bind = dtstack_hdfs

a2.sources.r1.port = 44444

 

#3 sink

a2.sinks.k1.type = avro

a2.sinks.k1.hostname = dtstack_hdfs

a2.sinks.k1.port = 4141

 

# 4 channel

a2.channels.c1.type = memory

a2.channels.c1.capacity = 1000

a2.channels.c1.transactionCapacity = 100

 

# 5 Bind

a2.sources.r1.channels = c1

a2.sinks.k1.channel = c1

 3.  创建flume33.conf,用于接收flume11flume22发送过来的数据流,最终合并后sinkHDFS

# 1 agent

a3.sources = r1

a3.sinks = k1

a3.channels = c1

 

# 2 source

a3.sources.r1.type = avro

a3.sources.r1.bind = dtstack_hdfs

a3.sources.r1.port = 4141

 

# 3 sink

a3.sinks.k1.type = hdfs

a3.sinks.k1.hdfs.path = hdfs://dtstack_hdfs:9000/flume3/%H

#上传文件的前缀

a3.sinks.k1.hdfs.filePrefix = flume3-

#是否按照时间滚动文件夹

a3.sinks.k1.hdfs.round = true

#多少时间单位创建一个新的文件夹

a3.sinks.k1.hdfs.roundValue = 1

#重新定义时间单位

a3.sinks.k1.hdfs.roundUnit = hour

#是否使用本地时间戳

a3.sinks.k1.hdfs.useLocalTimeStamp = true

#积攒多少个EventflushHDFS一次

a3.sinks.k1.hdfs.batchSize = 100

#设置文件类型,可支持压缩

a3.sinks.k1.hdfs.fileType = DataStream

#多久生成一个新的文件

a3.sinks.k1.hdfs.rollInterval = 600

#设置每个文件的滚动大小大概是128M

a3.sinks.k1.hdfs.rollSize = 134217700

#文件的滚动与Event数量无关

a3.sinks.k1.hdfs.rollCount = 0

#最小冗余数

a3.sinks.k1.hdfs.minBlockReplicas = 1

 

# 4 channel

a3.channels.c1.type = memory

a3.channels.c1.capacity = 1000

a3.channels.c1.transactionCapacity = 100

 

# 5 Bind

a3.sources.r1.channels = c1

a3.sinks.k1.channel = c1

 4. 执行测试:分别开启对应flume-job(依次启动flume-33flume-22flume11),同时产生文件变动并观察结果

$ bin/flume-ng agent --conf conf/ --name a3 --conf-file jobconf/flume33.conf

$ bin/flume-ng agent --conf conf/ --name a2 --conf-file jobconf/flume22.conf

$ bin/flume-ng agent --conf conf/ --name a1 --conf-file jobconf/flume11.conf

数据发送

1) telnet dtstack_hdfs 44444    打开后发送java

2) /opt/Andy 中追加python

相关文章

MySQL 初始化推荐关注的参数

MySQL 初始化推荐关注的参数

前言新部署的 MySQL 实例如何配置?本 SOP 将提供一些 MySQL 关键参数及设置方法。必须设置的参数1. innodb_buffer_pool_size对于 innodb 表引擎来说,用户数...

PG的锁(二)

四、死锁PostgreSQL自动检测死锁情况并会自动回滚其中一个事务进行处理,从而其他事务完成。db1=# select * from t1 where id in (1,2,3);  id | i...

FQA-Alluxo web ui出现Server Configuration Check failed

FQA-Alluxo web ui出现Server Configuration Check failed

1、背景在部署Alluxio高可用集群后,alluxio web页面出现Server Configuration Check failed2、解决办法./bin/alluxio fsadmin doc...

MySQL优化器特性(三)表关联之BKA(Batched Key Access)优化

MySQL优化器特性(三)表关联之BKA(Batched Key Access)优化

单表range查询时,可以使用MRR优化,先对rowid进行排序,然后再回表查询数据。在表关联的时候,也可以使用类似的优化方法,先根据关联条件取出被关联表的rowid,将rowid缓存在join bu...

mysql表结构对比工具

mysql表结构对比工具

一、AmpNmp.DatabaseCompare工具1、工具特点:优点:比较两个数据库全部表结构的差异,包括表名、存储引擎、字符集、注释的不同,以及每张表中的字段名、数据类型、字符集、默认值、注释的不...

Redis Sentinel与Cluster安装部署(二)

3.2cluster部署1、在对应的机器,下载、解压redis #详见sentinel部署内相关命令 2、创建对应的文件目录   mkdir -p /usr/lcoal/redis5/clust...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。