压测实操--nnbench压测hdfs_namenode负载方案

九月2年前技术文章1793


本次压测使用nnbench对namenode负载进行性能测试。nnbench生成很多与HDFS相关的请求,给NameNode施加较大的压力,这个测试能在HDFS上创建、读取、重命名和删除文件操作。

对应nnbench参数

image.png

参数列表

-operation

create_write open_read rename delete

-maps

mapper数

-reduces

reducer数

-startTime

开始时间

-blockSize

block size

-bytesToWrite

文件写入字节数 单位为b

-bytesPerChecksum


-numberOfFiles

生成的文件数

-replicationFactorPerFile

每个文件副本数

-baseDir

根路径

-readFileAfterOpen


注意:如果集群开放了安全认证,需要提前认证通过后,进行压测。

步骤

一、先使用默认值进行压测

目前压测集群的namenode为1G

image (1).png

create_write操作

示例:测试map为100,reduce为5,创建10000个文件。(需要查看的指标仪表盘样例)

hadoop jar /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation create_write \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 10000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench


hdfs指标



1、测试map为100,reduce为5,创建100w个文件。

hadoop jar /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation create_write \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 1000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench


2、测试map为100,reduce为5,创建500w个文件。

hadoop jar /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation create_write \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 5000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

3、测试map为100,reduce为5,创建1000w个文件。

hadoop jar /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation create_write \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 10000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

4、测试map为100,reduce为5,创建3000w个文件。

hadoop jar /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation create_write \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 30000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench


此时有节点内存已经达到93.2%,节点挂掉的风险比较大,增加namenode内存再继续进行压测

image.png

openread操作

1、测试map为100,reduce为5,创建100w个文件。

hadoop jar  /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation open_read \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 1000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

具体指标见示例中的仪表盘截图。

2、测试map为100,reduce为5,创建500w个文件。

hadoop jar /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation open_read \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 5000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench


3、测试map为100,reduce为5,创建1000w个文件。

hadoop jar /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation open_read \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 10000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

4、测试map为100,reduce为5,创建3000w个文件。

hadoop jar /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation open_read \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 30000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

rename操作

1、测试map为100,reduce为5,创建100w个文件。

hadoop jar  /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation rename \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 1000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

2、测试map为100,reduce为5,创建500w个文件。

hadoop jar  /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation rename \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 5000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

3、测试map为100,reduce为5,创建1000w个文件。

hadoop jar  /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation rename \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 10000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

4、测试map为100,reduce为5,创建3000w个文件。

hadoop jar  /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation rename \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 30000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

delete操作

1、测试map为100,reduce为5,创建100w个文件。

hadoop jar  /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation delete \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 1000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

2、测试map为100,reduce为5,创建500w个文件。

hadoop jar  /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation delete \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 5000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

3、测试map为100,reduce为5,创建1000w个文件。

hadoop jar  /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation delete \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 10000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

4、测试map为100,reduce为5,创建3000w个文件。

hadoop jar  /usr/hdp/3.1.5.0-152/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-3.1.1.3.1.5.0-152-tests.jar nnbench \
-operation delete \
-maps 100 \
-reduces 5 \
-blockSize 1 \
-bytesToWrite 1024 \
-numberOfFiles 30000000 \
-replicationFactorPerFile 3 \
-readFileAfterOpen true \
-baseDir /benchmarks/NNBench

二、增加资源配置进行压测

例如增大namenode内存为2G,依次测试create_write/openerad/rename/delete操作,在内存或者cpu负载达到瓶颈时,结束压测。

三、总结

在集群硬件资源能给到最大条件下(比如namenode最大能给到8G,再大就会影响其他组件的内存使用),压测出此时的并行文件数为该集群中能达到的最大值,执行任务过程中不要超过最大值,并且建议根据该值设置任务运行并行文件阈值进行控制。也可以对每次运行命令的结果tps进行整理形成曲线图,观察不同变量下tps的趋势。

image.png

趋势图样例


image (13).png


相关文章

Helm 控制函数

Helm 控制结构(在模板语言中称为 "actions")提供给你和模板作者控制模板迭代流的能力。 Helm 的模板语言提供了以下控制结构:if/else,用来创建条件语句with,用来指定范围ran...

两款方案详解,企业线下数据库迁移至云上ScyllaDB(2)

方案二通过在集群中添加新数据中心的方式,进行数据迁移。然后下线集群老的数据中心。1. 集群添加新数据中心1.1. 先决条件收集现有集群信息:cat /etc/scylla...

EMR-java配置国密SM4加密

EMR-java配置国密SM4加密

首先找到bcprov-jdk15on-1.56.jar这个包<dependency>    <groupId>org.bouncycastle</groupId> ...

datahub安装部署

datahub安装部署

背景:由于某客户需要建立sparksql的血缘关系,于是乎提出datahub,由于网上关于datahub资料较少,因此这里做以记录datahub作为一个元数据管理平台,他可以对数据资产进行有效的组织,...

Ambari部署

Ambari部署

Ambari 官方资料入口:https://www.cloudera.com/products/open-source/apache-hadoop/apache-ambari.htmlAmbari 相...

聊一聊DevOps工具

聊一聊DevOps工具

DevOps工具越来越多,了解它们以及知道在什么时候使用他们越来越重要。因此,尝试做一些研究,以便我们可以将DevOps产品分类为大家都熟悉的类别或用途。在开始讨论DevOps工具和类别之前,让我们了...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。