Hive优化之配置参数的优化(一)

二龙2年前技术文章651

 Hive是大数据领域常用的组件之一,主要是大数据离线数仓的运算,关于Hive的性能调优在日常工作和面试中是经常涉及的一个点,因此掌握一些Hive调优是必不可少的一项技能。影响Hive效率的主要有数据倾斜、数据冗余、job的IO以及不同底层引擎配置情况和、Hive本身参数和HiveSQL的执行等因素。本文主要是从创建表时配置参数方面对Hive优化进行描述。

1、创建一个很普通的表

create table test_user1(id int, name string,code string,code_id string ) ROW FORMAT DELIMITED FIELDS TERMINATED  BY ',';


2、查看这张表的一些信息

DESCRIBE FORMATTED  test_user1;

001.png

从这个描述中我们展开创建表时可以进行的一些优化;

2.1 表的文件数

中的numFiles表示的是表中含有的文件数,当文件数过多时,这张表可能小文件过多,这时候我们可以针对小文件的问题进行一些优化,HDFS本身提供了解决方案:

(1)Hadoop Archive/HAR:将小文件打包成大文件。

(2)SEQUENCEFILE格式:将小文件压缩成大文件。

(3)CombineFileInputFormat:在map和reduce处理之前组合小文件。

(4)HDFS Federation:HDFS联盟,使用多个namenode节点管理文件

除此之外,我们可以通过设置hive的参数来合并小文件       

1)输入阶段合并
需要更改Hive的输入文件格式,即参数hive.input.format,默认值是org.apache.hadoop.hive.ql.io.HiveInputFormat,我们改成org.apache.hadoop.hive.ql.io.CombineHiveInputFormat。
这样比起上面调整mapper数时,又会多出两个参数,分别是mapred.min.split.size.per.node和mapred.min.split.size.per.rack,含义是单节点和单机架上的最小split大小。如果发现有split大小小于这两个值(默认都是100MB),则会进行合并。具体逻辑可以参看Hive源码中的对应类。

2)输出阶段合并
直接将hive.merge.mapfiles和hive.merge.mapredfiles都设为true即可,前者表示将map-only任务的输出合并,后者表示将map-reduce任务的输出合并,Hive会额外启动一个mr作业将输出小文件合并成大文件。
另外,hive.merge.size.per.task可以指定每个task输出后合并文件大小的期望值,hive.merge.size.smallfiles.avgsize可以指定所有输出文件大小的均值阈值,默认值都是1GB。如果平均大小不足的话,就会另外启动一个任务来进行合并。

2.2  表的存储格式

表中的InputFormat和OutputFormat可以看出表的存储格式是TEXT类型,Hive支持TEXTFILE, SEQUENCEFILE, AVRO, RCFILE, ORC,以及PARQUET文件格式,可以通过两种方式指定表的文件格式:

1)CREATE TABLE ... STORE AS <file_format>:即在建表时指定文件格式,默认是TEXTFILE

2)ALTER TABLE ... [PARTITION partition_spec] SET FILEFORMAT <file_format>:修改具体表的文件格式

如果要改变创建表的默认文件格式,可以使用set hive.default.fileformat=<file_format>进行配置,改配置可以针对所有表。同时也可以使用set hive.default.fileformat.managed = <file_format>进行配置,改配置仅适用于内部表或外部表。扩展:不同存储方式的情况

TEXT, SEQUENCE和 AVRO文件是面向行的文件存储格式,不是最佳的文件格式,因为即便是只查询一列数据,使用这些存储格式的表也需要读取完整的一行数据。另一方面,面向列的存储格式(RCFILE, ORC, PARQUET)可以很好地解决上面的问题。关于每种文件格式的说明,如下:

1)TEXTFILE

创建表时的默认文件格式,数据被存储成文本格式。文本文件可以被分割和并行处理,也可以使用压缩,比如GZip、LZO或者Snappy。然而大部分的压缩文件不支持分割和并行处理,会造成一个作业只有一个mapper去处理数据,使用压缩的文本文件要确保文件的不要过大,一般接近两个HDFS块的大小。

2)SEQUENCEFILE

key/value对的二进制存储格式,sequence文件的优势是比文本格式更好压缩,sequence文件可以被压缩成块级别的记录,块级别的压缩是一个很好的压缩比例。如果使用块压缩,需要使用下面的配置:set hive.exec.compress.output=true; set io.seqfile.compression.type=BLOCK

3)AVRO

二进制格式文件,除此之外,avro也是一个序列化和反序列化的框架。avro提供了具体的数据schema。

4)RCFILE

全称是Record Columnar File,首先将表分为几个行组,对每个行组内的数据进行按列存储,每一列的数据都是分开存储,即先水平划分,再垂直划分。

5)ORC

全称是Optimized Row Columnar,从hive0.11版本开始支持,ORC格式是RCFILE格式的一种优化的格式,提供了更大的默认块(256M)

6)PARQUET

另外一种列式存储的文件格式,与ORC非常类似,与ORC相比,Parquet格式支持的生态更广,比如低版本的impala不支持orc格式。

配置同样数据同样字段的两张表,以常见的TEXT行存储ORC列存储两种存储方式为例,查看执行速度

TEXT存储方式

002.png

ORC存储方式

003.png 

总结:从上图中可以看出列存储在对指定进行查询时,速度更快,建议在建表时设置列存储的存储方式。

2.3 表的压缩

Hive表进行压缩是常见的优化手段一些存储方式自带压缩选择,比如SEQUENCEFILE支持三种压缩选择:NONE,RECORD,BLOCK。Record压缩率低,一般建议使用BLOCK压缩

ORC支持三种压缩选择:NONE,ZLIB,SNAPPY。我们以TEXT存储方式和ORC存储方式为例,查看表的压缩情况。

配置同样数据同样字段的四张表,一张TEXT存储方式,另外三张分别是默认压缩方式的ORC存储SNAPPY压缩方式的ORC存储和NONE压缩方式的ORC存储,查看在hdfs上的存储情况:

TEXT存储方式

004.png 

默认压缩ORC存储方式

005.png 

SNAPPY压缩的ORC存储方式

006.png 

NONE压缩的ORC存储方式

007.png 

总结:可以看到ORC存储方式将数据存放为两个block,默认压缩大小加起来134.69M,SNAPPY压缩大小加起来196.67M,NONE压缩大小加起来247.55M,TEXT存储方式的文件大小为366.58M,且默认block两种存储方式分别为256M和128M,ORC默认的压缩方式比SNAPPY压缩得到的文件还小,原因是ORZ默认的ZLIB压缩方式采用的是deflate压缩算法,比Snappy压缩算法得到的压缩比高,压缩的文件更小。ORC不同压缩方式之间的执行速度,经过多次测试发现三种压缩方式的执行速度差不多,所以我们是建议采用ORC默认的存储方式进行存储数据的。

2.4 分桶分区

中的Num Buckets表示桶的数量,我们可以通过分桶和分区操作对Hive表进行优化:

对于一张较大的表,可以将它设计成分区表,如果不设置成分区表,数据是全盘扫描的,设置成分区表后,查询时只在指定的分区中进行数据扫描,提升查询效率。要注意尽量避免多级分区,一般二级分区足够使用。常见的分区字段:

1)日期或者时间,比如year、month、day或者hour,当表中存在时间或者日期字段时,可以使用些字段。

2)地理位置,比如国家、省份、城市等

3)业务逻辑,比如部门、销售区域、客户等等

与分区表类似,分桶表的组织方式是将HDFS上的一张大表文件分割成多个文件。分桶是相对分区进行更细粒度的划分,分桶将整个数据内容按照分桶字段属性值得hash值进行区分,分桶可以加快数据采样,也可以提升join的性能(join的字段是分桶字段),因为分桶可以确保某个key对应的数据在一个特定的桶内(文件),所以巧妙地选择分桶字段可以大幅度提升join的性能。通常情况下,分桶字段可以选择经常用在过滤操作或者join操作的字段。

创建分桶表  

create table test_user_bucket(id int, name string,code string,code_id string ) clustered by(id) into 3 buckets ROW FORMAT DELIMITED FIELDS TERMINATED  BY ',';

查看描述信息

 

DESCRIBE FORMATTED test_user_bucket

 

多出了如下信息

008.png 

查看该表的hdfs

009.png 

同样的数据查看普通表和分桶表查询效率

普通表

010.png 

分桶表

011.png 

普通表是全表扫描,分桶表在按照分桶字段的hash值分桶后,根据join字段或者where过滤字段在特定的桶中进行扫描,效率提升。

 

 

相关文章

Hive架构图及Hive SQL的执行流程

Hive架构图及Hive SQL的执行流程

1、Hive产生背景MapReduce编程的不便性HDFS上的文件缺少Schema(表名,名称,ID等,为数据库对象的集合)2、Hive是什么Hive的使用场景是什么?基于Hadoop做一些数据清洗啊...

CDH实操--hive高可用

CDH实操--hive高可用

前言在CDH中,hive metastore、hiveserver2若角色单实例部署,或者部署多个实例但是连接配置任选其一的话,均存在单点问题,一旦实例故障就会影响业务稳定;这时我们就好考虑高可用部署...

Hive合并小文件:hive归档(archive)

Hive合并小文件:hive归档(archive)

一、概述       在HDFS中数据和元数据分别由DataNode和NameNode负责,这些元数据每个对象一般占用大约150个字节。大量的小文件相对于大文件会占用大量的NameNode内存。对Na...

helm安装部署trino对接hive(一)

helm安装部署trino对接hive(一)

前提:本文前提是基于hive组件已经提前安装的情况下,安装部署好trino容器之后进行对hive组件的对接。helm trino地址:https://artifacthub.io/packages/h...

Hive优化之监控(四)

Hive优化之监控(四)

    Hive是大数据领域常用的组件之一,主要是大数据离线数仓的运算,关于Hive的性能调优在日常工作和面试中是经常涉及的一个点,因此掌握一些Hive调优是必...

Hive压测之开源Hive基准测试工具(hive-testbench-hive14)

Hive压测之开源Hive基准测试工具(hive-testbench-hive14)

此文章禁止转载概述Hive基准测试工具工具,可用来造数测试Hive基本性能。TPC-DS:提供一个公平和诚实的业务和数据模型,99个案例TPC-H:面向商品零售业的决策支持系统测试基准,定义了8张表,...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。