Java-API-MapReduce的操作WordCount篇

芒果1年前技术文章545

首先就是pom文件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>org.example</groupId>
    <artifactId>HDFS_Demo</artifactId>
    <version>1.0-SNAPSHOT</version>
    <properties>
        <maven.compiler.source>11</maven.compiler.source>
        <maven.compiler.target>11</maven.compiler.target>
        <hadoop.version>3.3.1</hadoop.version>
    </properties>
    <dependencies>
        <!-- Hadoop所需依赖包 -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <!--mapreduce-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
    </dependencies>
</project>
代码(idea跑本地文件的)
package com.mapreduce;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
    //静态内部类(静态内部类只能访问外部类的静态成员)
    public static class WordCountMapper extends Mapper<LongWritable, Text, Text,IntWritable>{
        // #2
        private Text mapOutPutKey=new Text();
        private final static IntWritable mapOutPutValue = new IntWritable(1);
        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
                throws IOException, InterruptedException {
            // #1 方式1
//            String [] words = value.toString().split(" ");//直接split性能较低,或参考
//            for (String word : words) {
//                context.write(new Text(word), new IntWritable(1));
//            }
            // #2 方式2 效率高
            StringTokenizer stringTokenizer = new StringTokenizer(value.toString());
            while(stringTokenizer.hasMoreTokens()){
                String wordValue = stringTokenizer.nextToken();
                mapOutPutKey.set(wordValue);
                context.write(mapOutPutKey,mapOutPutValue);
            }
        }
    }
    public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        // 注意 reduce的输入类型是个迭代器 Iterable<IntWritable> value,因为map将分组后的数据传过来,map会做group,将相同key的value合并在一起,放到一个集合中,如<hadoop,list(1,1,...)>
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable intWritable : values) {
                // total
                sum += intWritable.get();
            }
            context.write(key, new IntWritable(sum));//或 new IntWritable().set(sum)
        }
    }
    //dirver(将dirver提出来了)
    public int run(String[] args) throws Exception {
        //1.get configuration
        Configuration conf = new Configuration();
//        conf.set("mapreduce.framework.name", "local");
        //2.create job
        Job job = Job.getInstance(conf,this.getClass().getSimpleName());
        // run jar
        job.setJarByClass(WordCount.class);
        //3.set job (input -> map -> reduce -> output)
        //3.1 map
        job.setMapperClass(WordCountMapper.class);
        //设置Map端输出key类和输出value类
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        //3.2 reduce
        job.setReducerClass(WordCountReducer.class);
        //设置Reduce端输出key类和输出value类
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        //3.3
        //input path
        FileInputFormat.addInputPath(job,new Path("/Users/mac/Desktop/客户/源码/HDFS_Demo/src/main/resources/input/test_dfs.txt"));
        //output path
        FileOutputFormat.setOutputPath(job,new Path("/Users/mac/Desktop/客户/源码/HDFS_Demo/src/main/resources/output"));
        //submit job 提交任务
        boolean isSuccess = job.waitForCompletion(true);//表示打印日志信息
        System.out.println(isSuccess);
        return isSuccess ? 0 : 1;
    }
    // run program 运行整个工程
    public static void main(String[] args) throws Exception, ClassNotFoundException, InterruptedException {
        int status = new WordCount().run(args);
        // 结束程序
        System.exit(status);
    }
    }
注意路径

33AD446E-87CB-4A89-9233-1AD7EFFEE9C0.png
如果需要跑hadoop文件需要更改路径打包上传hadoop
Hdfs创建目录
创建目录:
hdfs dfs -mkdir -p /input
删除目录:
hdfs dfs -rm -r /output
提交jar
hadoop jar HDFS_Demo-1.0-SNAPSHOT.jar com.mapreduce.WordCount

image.png

返回列表

上一篇:ubuntu安装mysql

下一篇:Dockerfile

相关文章

在经济低迷时管理云服务的策略!

近几年全球经济在疫情等各方面影响之下持续低迷,Wanclouds公司发布的一份研究报告指出,81%的美国IT领导者表示,他们的首席执行官要求他们减少或者不增加云计算支出。事实上,在那些被要求削减成本的...

单节点Kafka部署并开启Kerberos配置

安装Kerberosserver节点安装kerberos相关软件yum install -y krb5-server krb5-workstation krb5-libs修改配置文件krb5.conf...

hive创建hbase映射表

hive创建hbase映射表

hbase创建表,导入数据/opt/app/hbase-2.1.0/bin/hbase shell查看已有表,创建新表,查看表结构listcreate 'student', 'info', 'scor...

chengying-6.0登入接口逆向

chengying-6.0登入接口逆向

版本更新首先是登入的加密url:http://172.16.121.70/login参数1. username:admin@dtstack.com2. password:614bb9438210c69...

nginx配置反向代理某个url

nginx配置反向代理某个url

本文讲的这个漏洞 主要是为了解决漏洞扫描的问题我先介绍下这个漏洞主要是因为访问https://172.16.120.17:18090/ws/v1/cluster/info这个 yarn rest的一个...

HBase使用snappy压缩

HBase使用snappy压缩

安装编译环境依赖yum install -y automake autoconf gcc-c++ cmake libedit libtool openssl-devel ncurses-devel安装...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。